METABOLISME KARBOHIDRAT

0
581

 Manusia dalam melakukan kegiatan atau aktivitas setiap hari pasti membutuhkan energi. Oleh karena itu di dalam tubuh kita terjadi pembentukan energi. Sel yang terdapat di dalam tubuh kita menghasilkan energi yang akan kita gunakan.
Energi di dapat dari hasil ekstraksi energi yang terkandung di dalam ikatan-ikatan kimia pada molekul dengan cara mengkombinasi molekul makanan dengan oksigen di dalam mitokondria sel.
Molekul-molekul makanan yang digunakan antara lain:

1.      Glukosa dari metabolisme karbohidrat

2.      Asam amino dari metabolisme protein

3.      Asam lemak dan gliserol dari metabolisme lemak.

METABOLISME merupakan modifikasi senyawa kimia secara biokimia di dalam organisme dan sel. Metabolisme mencakup sintesis (anabolisme) dan penguraian (katabolisme) molekul organik kompleks. Metabolisme biasanya terdiri atas tahapan-tahapan yang melibatkan enzim, yang dikenal pula sebagai jalur metabolisme. Metabolisme total merupakan semua proses biokimia di dalam organisme. Metabolisme sel mencakup semua proses kimia di dalam sel. Tanpa metabolisme, makhluk hidup tidak dapat bertahan hidup.Produk metabolisme disebut metabolit. Cabang biologi yang mempelajari komposisi metabolit secara keseluruhan pada suatu tahap perkembangan atau pada suatu bagian tubuh dinamakan metabolomika.

Jalur-jalur metabolisme penting mencakup:

1.      Metabolisme karbohidrat

2.      Metabolisme lemak

3.      Metabolisme protein

4.      Metabolisme asam nukleat

KATABOLISME

Jalur katabolisme yang menguraikan molekul kompleks menjadi senyawa sederhana mencakup:

  1. Respirasi aerobik
  1. Respirasi anaerobik,

 Jalur katabolisme yang menguraikan molekul kompleks menjadi senyawa sederhana,  mencakup:

1.        Respirasi sel

Respirasi sel merupakan jalur metabolisme yang menghasilkan energi (dalam bentuk ATP dan NADPH) dari molekul-molekul bahan bakar (karbohidrat, lemak, dan protein).Respirasi sel, Sel juga melakukan respirasi, respirasi merupakan proses menyerap O2 dan melepaskan CO2. Namun, respirasi bukan hanya sekedar pertukaran gas-gas. Proses keseluruhannya adalah proses oksidasi reduksi. Proses respirasi tingkat sel merupakan proses katabolisme karbohidrat untuk menghasilkan energi dalam bentuk ATP. Respirasi terbagi lagi berdasarkan kebutuhannya atas oksigen. Respirasi yang membutuhkan okigen disebut respirasi aerob sedangkan respirasi yang tidak membutuhkan oksigen disebut anaerob.
Jalur-jalur metabolisme respirasi sel juga terlibat dalam pencernaan makanan.
Katabolisme karbohidratGlikogenolisis, pengubahan glikogen menjadi glukosa.Glikolisis, pengubahan glukosa menjadi piruvat dan ATP tanpa membutuhkan oksigen.Jalur pentosa fosfat, pembentukan NADPH dari glukosa.o Katabolisme proteinhidrolisis protein menjadi asam amino.

2.      Respirasi aerobic

Respirasi aerobik adalah proses reaksi kimia yang terjadi apabila sel menyerap O2, menghasilkan CO2 dan H2O.Proses respirasi yang berjalan secara Aerob meliputi 3 langkah:

a.         Glikolisis

Glikolisis memiliki lintasan yang unik, karena lintasan ini dapat menggunakan oksigen bila oksigen tersedia (aerob) atau bisa pula bekerja dalam keadaan sama sekali tanpa oksigen (anaerob).
Glikolisis merupakan proses penguraian karbohidrat menjadi piruvat. Juga disebut juga jalur metabolisme Emden Meyerg off dan sering diartikan pula sebagai penguraian glukosa menjadi piruvat. Proses glikolisis terdapat di dalam sitoplasma.Proses glikolisis adalah untuk menghasilkan energi (kedua—duanya secara langsung sebagai penyedia substrat untuk siklus asam sitrat dan fosforilasi oksidatif).
Glikolisis mengubah satu molekul glukosa menjadi dua molekul piruvat (yang kemudian diubah menjadi asetil KoA untuk masuk ke dalam siklus asam sitrat).  Dua molekul ATP dibutuhkan untuk mengawali reaksi dalam jalur glikolitik tetapi empat ATP dihasilkan kemudian, sehingga akan dihasilkan dua molekul molekul ATP per molekul glukosa yang didegradasi.

b.         Siklus Krebs

Tahapan yang paling utama dalam respirasi aerob adalah siklus krebs. Karena baik respirasi aerop maupun anaerob sama-sama melalui tahap glikolisis perbedaannya terjadi pada tahapan selanjutnya. Apabila terdapat oksigen maka proses dilanjutkan ke tahap siklus krebs namun bila tidak ada oksigen diteruskan ke tahap fermentasi atau proses pembentukan asam laktat.Glikolisis melepas energi kurang dari seperempat energi kimiawi yang tersimpan dalam glukosa, sebagian besar energi itu tetap tersimpan dalam dua molekul piruvet. Jika ada oksigen molekuler, piruvat itu memasuki mitokondria dimana enzim siklus krebs menyempurnakan oksidasi bahan bakar organiknya.Memasuki siklus krebs, asetil KoA direaksikan dengan asam oksaloasetat menjadi asam piruvat. selanjutnya asam oksaloasetat memasuki daur menjadi berbagai macam zat yang akhirnya menjadi asam oksalosuksinat. Dalam perjalanannya, CO2 dilepaskan. Pada tiap tahapan, dilepaskan energi dalam bentuk ATP dan hidrogen. ATP yang dihasilkan langsung dapat digunakan. Sebaliknya, hidrogen berenergi digabungkan dengan penerima hidrogen yaitu NAD dan FAD, untuk dibawa ke sistem transport elektron. Dalam tahap ini dilepaskan energi, dan hidrogen direasikan dengan oksigen membentuk air. Seluruh reaksi siklus krebs berlangsung dengan memerlukan oksigen bebas (aerob). Siklus krebs berlangsung didalam mitokondria.

c.         Transport electron

Transpot elektron adalah tahap akhir dalam respirasi sel aerobik yang meliputi proses perpindahan elektron dari molekul donor (misal: NADH, substrat organik) menuju aseptor terakhir yakni oksigen.
Energi yang terbentuk dari peristiwa glikolisis dan siklus krebs ada dua macam. Pertama dalam bentuk ikatan fosfat berenergi tinggi, yaitu ATP atau GTP (Guanin Tripospat). Energi ini merupakan energi siap pakai yang langsung dapat digunakan. Kedua dalam bentuk transport elektron, yaitu NADH (Nikotin Adenin Dinokleutida) dan FAD (Flafin adenine dinukleotida) dalam bentuk FADH2. Kedua macam sumber elektron ini dibawa kesistem transfer elektron. Proses transfer elektron ini sangat komplek, pada dasarnya, elektron dan H+ dan NADH dan FADH2 dibawa dari satu substrak ke substrak yang lain secara berantai. Setiap kali dipindahkan, energi yang terlepas digunakan untuk mengikatkan fosfat anorganik (P) kemolekul ADP sehingga terbentuk ATP. Pada bagian akhir terdapat oksigen sebagai penerima, sehingga terbentuklah H2O. katabolisme 1 glukosa melalui respirasi aerobik menghasilkan 3 ATP. Setiap reaksi pada glikolisis, siklus krebs dan transport elektron dihasilkan senyawa – senyawa antara. Senyawa itu digunakan bahan dasar anabolisme.   Berikut tahapan respirasi aerob antara lain:

Tempat Tahapan Produk
Sitoplasma Glikolisis 2 mol asam piruvat

2 mol NADH

2 mol ATP

Membran Luar Dekarboksilasi Oksidatif 2 mol asetil CoA

2 mol NADH

2 mol CO2

Matriks Mitokondria Siklus Krebs 2 mol FADH2

6 mol NADH

2 mol ATP

4 mol CO2

Krista Mitondria Transpor Elektron 38 mol ATP

H2O

 
1 NADH=3 ATP sedangkan 1 FADH2=2 ATPJadi, total energinya adalah 34 ATP ditambah 4 ATP menjadi 38 ATP. Ada beberapa buku yang mengatakan bahwa energi total adalah 36 ATP karena jumlah penyetaraan NADH dan FADHdengan ATP tidak sepenuhnya berjumlah demikian tapi merupakan bilangan yang mendekati bilangan tersebut. Namun pada umumnya semua buku menggunakan 38 ATP sebagai hasil akhir.

3.        Respirasi anaerobik

Respirasi anaerobik adalah reaksi pemecahan karbohidrat untuk mendapatkan energi tanpa menggunakan oksigen. Respirasi anaerobik menggunakan senyawa tertentu misalnya asam fosfoenol piruvat atau asetal dehida, sehingga pengikat hidrogen dan membentuk asam laktat atau alcohol. Respirasi anaerobik terjadi pada jaringan yang kekurangan oksigen, akan tanaman yang terendam air, biji – biji yang kulit tebal yang sulit ditembus oksigen, sel – sel ragi dan bakteri anaerobik. Bahan baku respirasi anaerobik pada peragian adalah glukosa. Selain glukosa, bahan baku seperti fruktosa, galaktosa dan malosa juga dapat diubah menjadi alkohol. Hasil akhirnya adalah alcohol, karbon dioksida dan energi. Glukosa tidak terurai lengkap menjadi air dan karbondioksida, energi yang dihasilkan lebih kecil dibandingkan respirasi aerobik. Reaksinya :C6H12O6 Ragi  ——- >> 2C2H5OH + 2CO2 + 21KalDari persamaan reaksi tersebut terlihat bahwa oksigen tidak diperlukan.Terdapat beberapa langkah di dalam respirasi anaerobik antara lain:

1.         Daur Cori

Daur cori atau siklus cori adalah siklus energi yang dibentuk antara lintasan yang menghasilkan tiga senyawa yaitu asam laktatasam piruvat dan alanina, dengan lintasan glukoneogenesis. Siklus Cori yang pertama ditemukan terjadi antara jaringan otot dan hati yang membentuk siklus. Asam laktat yang disintesis oleh sel otot di lintasan glikolisis akan diserap oleh hati dan diubah menjadi glukosaSekresi glukosa oleh hati pada lintasan glukoneogenesis kemudian diserap oleh sel otot untuk diubah kembali menjadi asam laktat.Dalam tiap sel, kedua lintasan, glukoneogenesis dan glikolisis berada dalam koordinasi sedemikian rupa sehingga salah satu lintasan akan relatif tidak aktif pada saat lintasan yang lain menjadi sangat aktif. Jika kedua lintasan melakukan aktivitas tinggi pada saat yang bersamaan, hasil akhir akan berupa hidrolisis terhadap 2 ATP dan 2 GTP untuk tiap siklus reaksi. Namun sejumlah enzim dengan kadar dan aktivitas yang berbeda dari tiap lintasan dikendalikan agar hal tersebut tidak terjadi. Lagipula, laju lintasan glikolisis juga ditentukan oleh kadar gula darah, sedangkan laju lintasan glukoneogenesis ditentukan oleh asam laktat dan beberapa senyawa prekursor glukosa.Sehingga lintasan glikolisis dalam satu sel akan berpasangan dengan lintasan glukoneogenesis dalam sel lain melalui mediasi plasma darah dan membentuk satu siklus yang disebut siklus Cori. Siklus Cori biasa terjadi antara sel otot lurik dan organ hati, oleh karena otot lurik, pada saat berkontraksi, akan mendifusikan asam laktat dan asam piruvat keluar menjadi sirkulasi darah. Asam laktat lebih banyak disekresi oleh karena rasio NADH: NAD+ saat kontraksi otot akan mengubah sebagian asam piruvat menjadi asam laktat. Asam laktat akan terdifusi masuk ke dalam hati oleh karena rasio NADH: NAD+ yang rendah, untuk dioksidasi menjadi asam piruvat dan kemudian dikonversi menjadi glukosa.

2.         Fermentasi
Fermentasi adalah proses produksi energi dalam sel dalam keadaan anaerobik (tanpaoksigen). Secara umum, fermentasi adalah salah satu bentuk respirasi anaerobik, akan tetapi, terdapat definisi yang lebih jelas yang mendefinisikan fermentasi sebagai respirasidalam lingkungan anaerobik dengan tanpa akseptor elektron eksternal. Gula adalah bahan yang umum dalam fermentasi. Beberapa contoh hasil fermentasi adalahetanolasam laktat, dan hidrogen. Akan tetapi beberapa komponen lain dapat juga dihasilkan dari fermentasi seperti asam butirat dan asetonRagi dikenal sebagai bahan yang umum digunakan dalam fermentasi untuk menghasilkan etanol dalam biranggur dan minuman beralkohol lainnya.

3.         Fermentasi asam laktat

Fermentasi asam laktat adalah respirasi yang terjadi pada sel hewan atau manusia, ketika kebutuhan oksigen tidak tercukupi akibat bekerja terlalu berat dalam sel otot asam laktat dapat menyebabkan gejala kram dan kelelahan. Laktat yang terakumulasi sebagai produk limbah dapat menyebabkan otot letih dan nyeri, namun secara perlahan diangkut oleh darah ke hati untuk diubah kembali menjadi piruvat.

4.         Fermentasi etanol atau alkohol

Fermentasi alkohol merupakan suatu reaksi pengubahan glukosa menjadi etanol (etil alkohol) dan karbondioksida. Organisme yang berperan yaitu Saccharomyces cerevisiae (ragi) untuk pembuatan tape, roti atau minuman keras. Reaksi Kimia:C6H12O6 → 2C2H5OH + 2CO2 + 2 ATPSumber energi dalam kondisi anaerobicFermentasi diperkirakan menjadi cara untuk menghasilkan energi pada organismepurba sebelum oksigen berada pada konsentrasi tinggi di atmosfer seperti saat ini, sehingga fermentasi merupakan bentuk purba dari produksi energi sel. Produk fermentasi mengandung energi kimia yang tidak teroksidasi penuh tetapi tidak dapat mengalami metabolisme lebih jauh tanpa oksigen atau akseptor elektron lainnya (yang lebih highly-oxidized) sehingga cenderung dianggap produk sampah (buangan). Konsekwensinya adalah bahwa produksi ATP dari fermentasi menjadi kurang effisien dibandingkan oxidative phosphorylation, di mana pirufat teroksidasi penuh menjadi karbon dioksida. Fermentasi menghasilkan dua molekul ATP per molekul glukosa bila dibandingkan dengan 36 ATP yang dihasilkan respirasi aerobik. “Glikolisis aerobic” adalah metode yang dilakukan oleh sel otot untuk memproduksi energi intensitas rendah selama periode di mana oksigen berlimpah. Pada keadaan rendah oksigen, makhluk bertulang belakang (vertebrata) menggunakan “glikolisis anaerobik” yang lebih cepat tetapi kurang effisisen untuk menghasilkan ATP. Kecepatan menghasilkan ATP-nya 100 kali lebih cepat daripada oxidative phosphorylation. Walaupun fermentasi sangat membantu dalam waktu pendek dan intensitas tinggi untuk bekerja, ia tidak dapat bertahan dalam jangka waktu lama pada organisme aerobik yang kompleks. Sebagai contoh, pada manusia, fermentasi asam laktat hanya mampu menyediakan energi selama 30 detik hingga 2 menit.Tahap akhir dari fermentasi adalah konversi piruvat ke produk fermentasi akhir. Tahap ini tidak menghasilkan energi tetapi sangat penting bagi sel anaerobik karena tahap ini meregenerasi nicotinamide adenine dinucleotide (NAD+), yang diperlukan untuk glikolisis. Ia diperlukan untuk fungsi sel normal karena glikolisis merupakan satu-satunya sumber ATP dalam kondisi anaerobik.

ANABOLISME

Jalur anabolisme yang membentuk senyawa-senyawa dari prekursor sederhana mencakup:

1.        Glikogenesis

Glikogenesis merupakan pembentukan glikogen dari glukosa. Glikogenesis adalah lintasan metabolisme yang mengkonversi glukosa menjadi glikogen untuk disimpan di dalam hati. Lintasan ini diaktivasi di dalam hati, oleh hormon insulin sebagai respon terhadap rasio gula darah yang meningkat, misalnya karena kandungankarbohidrat setelah makan; atau teraktivasi pada akhir siklus Cori. Penyimpangan atau kelainan metabolisme pada lintasan ini disebut glikogenosis.Proses glikogenesis adalah sebagai berikut:
a.      Glukosa mengalami fosforilasi menjadi glukosa 6-fosfat (reaksi yang lazim terjadi juga pada lintasan glikolisis). Di otot reaksi ini dikatalisir oleh heksokinase sedangkan di hati oleh glukokinase.
b.      Glukosa 6-fosfat diubah menjadi glukosa 1-fosfat dalam reaksi dengan bantuan katalisator enzim fosfoglukomutase. Enzim itu sendiri akan mengalami fosforilasi dan gugus fosfo akan mengambil bagian di dalam reaksi reversible yang intermediatnya adalah glukosa 1,6-bifosfat.
Enz-P + Glukosa 1-fosfat ↔ Enz + Glukosa 1,6-bifosfat ↔ Enz-P + Glukosa 6-fosfat.
Enz-P + Glukosa 1-fosfat ↔ Enz + Glukosa 1,6-bifosfat ↔ Enz-P + Glukosa 6-fosfat.

c.       Selanjutnya glukosa 1-fosfat bereaksi dengan uridin trifosfat (UTP) untuk membentuk uridin difosfat glukosa (UDPGlc). Reaksi ini dikatalisir oleh enzim UDPGlc pirofosforilase.
UDPGlc + PPi ↔ UTP + Glukosa 1-fosfat

d.      Hidrolisis pirofosfat inorganic berikutnya oleh enzim pirofosfatase inorganik akan menarik reaksi kearah kanan persamaan reaksi.
e.       Atom C1 pada glukosa yang diaktifkan oleh UDPGlc membentuk ikatan glikosidik dengan atom C4 pada residu glukosa terminal glikogen, sehingga membebaskan uridin difosfat. Reaksi ini dikatalisir oleh enzim glikogen sintase. Molekul glikogen yang sudah ada sebelumnya (disebut glikogen primer) harus ada untuk memulai reaksi ini. Glikogen primer selanjutnya dapat terbentuk pada primer protein yang dikenal sebagai glikogenin.

2.        Glukoneogenesis

Glukoneogenesis adalah  pembentukan glukosa dari senyawa organik lain. Glukoneogenesis merupakan istilah yang digunakan untuk mencakup semua mekanisme dan lintasan yang bertanggung jawab untuk mengubah senyawa nonkarbohidrat menjadi glukosa atau glikogen. Subtrat utama bagi glukoneogenesis adalah asam amino glukogenik, laktat, gliserol dan propionat. Hati dan ginjal merupakan jaringan utama yang terlibat, Karena kedua organ tersebut mengandung komplemen enzim-enzim yang diperlukan. Glukoneogenesis memenuhi kebutuhan tubuh akan glukosa pada saat karbohidrat tidak tersedia dalam jumlah yang cukup di dalam makanan. Pasokan glukosa yang terus menerus diperlukan sebagai sumber energi, khususnya bagi sistem syaraf dan eritrosit. Kegagalan pada Glukoneogenesis biasanya berakibat fatal. Kadar glukosa darah di bawah nilai yang kritis akan menimbulkan disfungsi otak yang dapat mengakibatkan koma dan kematian. Glukosa juga dibutuhkan di dalam jaringan adiposa sebagai sumber gliserida-gliserol, dan mungkin mempunyai peran di dalam mempertahankan kadar intermediat pada siklus asam sitrat dibanyak jaringan tubuh. Bahkan dalam keadaan lemak memasok sebagian besar kebutuhan kalori bagi organisme tersebut, selalu terdapat kebutuhan basal tertentu aaakan glukosa. Glukosa merupakan satu-satunya bahan bakar yang yang memasok energi bagi otot rangka pada keadaan anaerob. Unsur ini merupakan prekursor gula susu (laktosa) di kelenjar payudara dan secara aktif diambil oleh janin. Selain itu, mekanisme glukoneogenik dipakai untuk membersihkan berbagai produk metabolisme jaringan lainnya dari darah, missal laktat yang dihasilkan oleh otot dan eritrosit, dan gliserol yang secara terus-menerus diproduksi oleh jaringan adipose. Propionat, yaitu asam lemak glukogenik utama yang dihasilkan dalam proses digesti karbohidrat oleh hewan pemamah biak, merupakan substrat penting untuk Glukoneogenesis di dalam tubuh spesies ini.3.         Siklus Calvin dan fiksasi karbonSiklus Calvin terdiri atas dua tahap reaksi, yaitu reaksi terang akan menghasilkan produk akhir berupa ATP dan NADPH2 dan reaksi gelap akan menghasilkan gula (karbohidrat), kedua reaksi tersebut terjadi dalam kloroplas yang terdapat di dalam daging daun (mesofil). Tahapan reaksi siklus Calvin adalah karboksilasi, reduksi dan regenerasi.

a.       Karboksilasi (Fiksasi) CO2

CO2 diikat (fiksasi) oleh senyawa rebulosa bifosfat (RuBP) yang memiliki atom C sebanyak 5 (C-5), karena hanya mengikat satu atom C (C-1) maka terbentuk senyawa RuBP dengan atom C sebanyak 6 (C-6) dalam keadaan yang tidak stabil dan pecah menjadi 2 senyawa gliseraldehid 3-fosfat (G3P).

b.       Reduksi

Selanjutnya 2 senyawa gliseraldehid 3-fosfat (G3P) bereaksi dengan ATP, membentuk asam fosfogliseraldehid yang masih berikatan dengan Hberasal dari NADPH2. Siklus reaksinya harus berjalan 3 kali, baru terbentuk hasil akhir yaitu 6 senyawa gliseraldehid 3-fosfat (G3P).

c.       Regenerasi

Regenerasi atau pembentukan kembali senyawa rebulosa bifosfat (RuBP) digunakan untuk mengikat CO2. Pembentukan kembali senyawa rebulosa bifosfat (RuBP) dan pecah menjadi 2 senyawa (G3P) bereaksi dengan ATP membentuk asam fosfogliseraldehid dan NADPH2. Siklus reaksinya berjalan 3 kali, dan kembali regenerasi lagi. Jadi untuk membentuk 1 molekul glukosa maka dibutuhkan sebanyak 6 kali siklus (siklus Calvin) dengan menangkap sebanyak 6 molekul 6CO2, reaksinya sebagai berikut.6CO2 + 6H2O ———> C6H12O6 + 6O2  DEKARBOKSILASI OKSIDATIFDekarboksilasi oksidatif adalah reaksi yang mengubah asam piruvat yang beratom 3 C menjadi senyawa baru yang beratom C dua buah, yaitu asetil koenzim-A (asetil ko-A). Reaksi dekarboksilasi oksidatif ini (disingkat DO) sering juga disebut sebagai tahap persiapan untuk masuk ke siklus Krebs. Reaksi DO ini mengambil tempat di intermembran mitokondria.Setelah melalui reaksi glikolisis, jika terdapat molekul oksigen yang cukup maka asam piruvat akan menjalani tahapan reaksi selanjutnya, yaitu siklus Krebs yang bertempat di matriks mitokondria. Jika tidak terdapat molekul oksigen yang cukup maka asam piruvat akan menjalani reaksi fermentasi. Akan tetapi, asam piruvat yang mandapat molekul oksigen yang cukup dan akan meneruskan tahapan reaksi tidak dapat begitu saja masuk ke dalam siklus Krebs, karena asam piruvat memiliki atom C terlalu banyak, yaitu 3 buah. Persyaratan molekul yang dapat menjalani siklus Krebs adalah molekul tersebut harus mempunyai dua atom C (2 C). Karena itu, asam piruvat akan menjalani reaksi dekarboksilasi oksidatif.
Pertama-tama, molekul asam cuka yang dihasilkan reaksi glikolisis akan melepaskan satu gugus karboksilnya yang sudah teroksidasi sempurna dan mengandung sedikit energi, yaitu dalam bentuk molekul CO2. Setelah itu, 2 atom karbon yang tersisa dari piruvat akan dioksidasi menjadi asetat (bentuk ionisasi asam asetat). Selanjutnya, asetat akan mendapat transfer elektron dari NAD+ yang tereduksi menjadi NADH. Kemudian, koenzim A (suatu senyawa yang mengandung sulfur yang berasal dari vitamin B) diikat oleh asetat dengan ikatan yang tidak stabil dan membentuk gugus asetil yang sangat reaktif, yaitu asetil koenzim-A, yang siap memberikan asetatnya ke dalam siklus Krebs untuk proses oksidasi lebih lanjut.Selama reaksi transisi ini, satu molekul glukosa yang telah menjadi 2 molekul asam piruvat lewat reaksi glikolisis menghasilkan 2 molekul NADH.DEKARBOKSILASI OKSIDATIF – SIKLUS KREBS DEKARBOLSILASI OKSIDATIF atau disingkat dengan DO adalah proses Perubahan Piruvat Menjadi Asetilkoezim – A Proses Deyang mana proses ini berlangsung karboksilasi Oksidatif ini di membran luar mitocondria sebagai fase antara sebelum Siklus Krebs ( Pra Siklus Krebs ) sehingga DO sering dimasukkan langsung dalam Siklus krebs . OK Reaksi oksidasi piruvat hasil glikolisis menjadi asetil koenzim-A, merupakan tahap reaksi penghubung yang penting antara glikolisis dengan jalur metabolisme lingkar asam trikarboksilat (daur Krebs). Reaksi yang diaktalisis oleh kompleks piruvat dehidrogenase dalam matriks mitokondria melibatkan tiga macam enzim (piruvat dehidrogenase, dihidrolipoil transasetilase, dan dihidrolipoil dehidrogenase), lima macam koenzim (tiaminpirofosfat, asam lipoat, koenzim-A, flavin adenin dinukleotida, dan nikotinamid adenin dinukleotida) dan berlangsung dalam lima tahap reaksi. Keseluruhan reaksi dekarboksilasi ini irreversibel, dengan ∆ G0 = – 80 kkal per mol. Reaksi ini merupakan jalan masuk utama karbohidrat kedalam daur Krebs.
Tahap reaksi pertama dikatalis oleh piruvat dehidrogenase yang menggunakan tiamin pirofosfat sebagai koenzimnya. Dekarboksilasi piruvat menghasilkan senyawa α-hidroksietil yang terkait pada gugus cincin tiazol dari tiamin pirofosfat. Pada tahap reaksi kedua α-hidroksietil didehidrogenase menjadi asetil yang kemudian dipindahkan dari tiamin pirofosfat ke atom S dari koenzim yang berikutnya, yaitu asam lipoat, yang terikat pada enzim dihidrolipoil transasetilase. Dalam hal ini gugus disulfida dari asam lipoat diubah menjadi bentuk reduksinya, gugus sulfhidril. Pada tahap reaksi ketiga, gugus asetil dipindahkan dengan perantara enzim dari gugus lipoil pada asam dihidrolipoat, kegugus tiol (sulfhidril pada koenzim-A). Kemudian asetil ko-A dibebaskan dari sistem enzim kompleks piruvat dehidrogenase.
Pada tahap reaksi keempat gugus tiol pada gugus lipoil yang terikat pada dihidrolipoil transasetilase dioksidasi kembali menjadi bentuk disulfidanya dengan enzim dihidrolipoil dehidrogenase yang berikatan dengan FAD (flavin adenin dinukleotida).
Akhirnya (tahap reaksi kelima) FADH+ (bentuk reduksi dari FAD) yang tetap terikat pada enzim, dioksidasi kembali oleh NAD+ (nikotinamid adenin dinukleotida) manjadi FAD, sedangkan NAD+ berubah menjadi NADH (bentuk reduksi dari NAD+). Pengaturan Dekarboksilasi Piruvat Telah diketahui bahwa di samping mengandung tiga macam enzim tersebut di atas, kompleks enzim piruvat dehidrogenase juga mempunyai dua macam enzim yang terdapat dalam sub unit pengaturnya, yaitu piruvat dehidrogenase kinase dan piruvat dehidrogenase fosfatase. Kedua enzim ini berperan dalam mengatur laju reaksi dekarboksilasi piruvat dengan cara mengendalikan kegiatan subunit katalitiknya pada kompleks enzim piruvat dehidrogenase itu sendiri. Untuk lebih jelasnya perhatikan skema ini Bila jumlah ATP yang dihasilkan oleh daur kreb dan fosforilasi bersifat oksidasi terlalu banyak, keseimbangan reaksi akan berjalan kebawah (laju reaksi fosforilasi sub unit katalitik kompleks piruvat dehidrogenase bertambah besar) sehingga kegiatan kompleks piruvat dehidrogenase terhambat dan menjadi tidak aktif. Hal ini menyebabkan terhentinya reaksi pembentukan asetil ko-A dari piruvat. Akibatnya, jumlah asetil ko-A yang diperlukan untuk daur Krebs akan berkurang sehingga laju reaksi daur Krebs terhambat dan produksi ATP terhenti. Sebaliknya jika jumlah ADP banyak (ATP sedikit), keseimbangan reaaksi didorong ke atas (laju reaksi defosforilasi kompleks piruvat dehidrogenase bertambah besar) sehingga kegiatan kompleks piruvat dehidrogenase bertambah. Akibatnya, reaksi dekarboksilasi piruvat menjadi asetil ko-A naik, sehingga laju reaksi daur Krebs bertambah besar dan produksi ATP bertambah banyak.

LEAVE A REPLY

Please enter your comment!
Please enter your name here